Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
Se Pu ; 42(2): 176-184, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38374598

RESUMO

Short-chain chlorinated paraffins (SCCPs) are an emerging class of persistent organic pollutants (POPs) that are widely detected in environmental matrices and human samples. Because of their environmental persistence, long-range transport potential, bioaccumulation potential, and biotoxicity, SCCPs pose a significant threat to human health. In this study, metabolomics technology was applied to reveal the metabolomic interference in human normal hepatic (L02) cells after exposure to low (1 µg/L), moderate (10 µg/L), and high (100 µg/L) doses of SCCPs. Principal component analysis (PCA) and metabolic effect level index (MELI) values showed that all three SCCP doses caused notable metabolic perturbations in L02 cells. A total of 72 metabolites that were annotated by MS/MS and matched with the experimental spectra in the Human Metabolome Database (HMDB) or validated by commercially available standards were selected as differential metabolites (DMs) across all groups. The low-dose exposure group shared 33 and 36 DMs with the moderate- and high-dose exposure groups, respectively. The moderate-dose exposure group shared 46 DMs with the high-dose exposure group. In addition, 33 DMs were shared among the three exposure groups. Among the 72 DMs, 9, 9, and 45 metabolites participated in the amino acid, nucleotide, and lipid metabolism pathways, respectively. The results of pathway enrichment analysis showed that the most relevant metabolic pathways affected by SCCPs were the lipid metabolism, fatty acid ß-oxidation, and nucleotide metabolism pathways, and that compared with low-dose exposure, moderate- and high-dose SCCP exposures caused more notable perturbations of these metabolic pathways in L02 cells. Exposure to SCCPs perturbed glycerophospholipid and sphingolipid metabolism. Significant alterations in the levels of phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins indicated SCCP-induced biomembrane damage. SCCPs inhibited fatty acid ß-oxidation by decreasing the levels of short- and medium-chain acylcarnitines in L02 cells, indicating that the energy supplied by fatty acid oxidation was reduced in these cells. Furthermore, compared with low- and moderate-dose SCCPs, high-dose SCCPs produced a significantly stronger inhibition of fatty acid ß-oxidation. In addition, SCCPs perturbed nucleotide metabolism. The higher hypoxanthine levels observed in L02 cells after SCCP exposures indicate that SCCPs may induce several adverse effects, including hypoxia, reactive oxygen species production, and mutagenesis in L02 cells.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/toxicidade , Parafina/análise , Espectrometria de Massas em Tandem , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental/métodos , Ácidos Graxos , Nucleotídeos , Hepatócitos/química , China
2.
Environ Monit Assess ; 195(2): 300, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642744

RESUMO

Morphological alterations of cells and tissues usually occur in biological organisms exposed to environmental contaminants, there by acting as a biomarker of environmental pollution, thus, making this study highly pertinent. The effect of industrial pollution on the qualitative and quantitative morphological parameters of hepatocytes (through histological analysis and cytomorphometry) was studied in two contrasting species of small mammals (Talpa europaea and Sylvaemus uralensis), taking into account the animal age (young and adult groups) and liver concentrations of heavy metals (Cu, Zn, Cd, Pb). Studies were performed in the regions exposed to emissions from two currently operating copper smelters: Middle Ural Copper Smelter (Middle Urals, T. europaea catching area) and Karabash Copper Smelter (Southern Urals, S. uralensis catching area). Seven morphometric parameters of hepatocytes were measured, of which two key parameters were selected by the method of principal components-the cell packing density and nuclear-cytoplasmic ratio (N/C). It was found that cell packing density in T. europaea from the impact zone decreased relative to the background area in young animals. At the same time, the differences in this parameter between the age groups from the background zone were leveled in the impact area of catching. The N/C ratio in T. europaea hepatocytes showed no correlation with either animal age or site of capture (background or impact area). In S. uralensis, both parameters, even taking into account the age, were found to be insensitive to indicate an effect of industrial pollution. Dystrophic changes (tested through histological analysis) in the liver tissue were revealed in all animal groups, but their frequency did not depend on any of the factors (age, zone) as well as the level of accumulation of toxic heavy metals (Cd, Pb). Morphometric parameters of hepatocytes have proved to be more reliable indicators of pollution, compared to the frequency of liver histopathology, due to lower subjectivity in their evaluation.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Camundongos , Cobre/análise , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Poluição Ambiental/análise , Mamíferos , Hepatócitos/química , Murinae , China , Medição de Risco , Solo
3.
Clin Infect Dis ; 76(3): e801-e809, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35594553

RESUMO

BACKGROUND: This study investigated the effect of nucleos(t)ide analogue (NUC) treatment on hepatitis B virus (HBV) DNA integration and hepatocyte clonal expansion, both of which are implicated in hepatocellular carcinoma (HCC) in chronic hepatitis B. METHODS: Twenty-eight patients receiving NUCs (11 lamivudine, 7 telbivudine, 10 entecavir) were included. All had liver biopsies at baseline and year 1, and 7 had a third biopsy at year 10. HBV DNA integration and hepatocyte clone size were assessed by inverse polymerase chain reaction. RESULTS: All patients had detectable HBV integration at baseline, with a median integration frequency of 1.01 × 109 per liver and hepatocyte clone size of 2.41 × 105. Neither integration frequency nor hepatocyte clone size correlated with age and HBV virologic parameters. After 1 year of treatment, HBV integration was still detectable in all patients, with a median of 5.74 × 108 integration per liver (0.22 log reduction; P = .008) and hepatocyte clone size of 1.22 × 105 (0.40 log reduction; P = .002). HBV integration remained detectable at year 10 of treatment, with a median integration frequency of 4.84 × 107 integration per liver (0.93 log reduction from baseline) and hepatocyte clone size of 2.55 × 104 (1.02 log reduction from baseline). From baseline through year 1 to year 10, there was a decreasing trend in both integration frequency and hepatocyte clone size (P = .066 and.018, respectively). CONCLUSIONS: NUCs reduced both HBV DNA integration and hepatocyte clonal expansion, suggesting another alternative pathway besides direct viral suppression to reduce HCC risk. Our findings supported the notion for a long-term NUC treatment to prevent HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Antivirais/uso terapêutico , Antivirais/farmacologia , DNA Viral/genética , Hepatite B Crônica/tratamento farmacológico , Hepatócitos/química , Integração Viral , Hepatite B/tratamento farmacológico
4.
Biomed Pharmacother ; 158: 114124, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521247

RESUMO

Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 µM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.


Assuntos
Cafeína , Café , Humanos , Cafeína/farmacologia , Proteômica , Espectrometria de Massas em Tandem , Hepatócitos/química
5.
Mol Metab ; 63: 101530, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718339

RESUMO

OBJECTIVE: To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels. METHODS: We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations. Glucagon responsiveness was measured in mice fed a high cholesterol diet with or without simvastatin to modulate hepatocyte cholesterol content. RESULTS: GCGR cAMP signalling was reduced by higher cholesterol levels across different cellular models. Ex vivo glucagon-induced glucose output from mouse hepatocytes was enhanced by simvastatin treatment. Mice fed a high cholesterol diet had increased hepatic cholesterol and a blunted hyperglycaemic response to glucagon, both of which were partially reversed by simvastatin. Simulations identified likely membrane-exposed cholesterol binding sites on the GCGR, including a site where cholesterol is a putative negative allosteric modulator. CONCLUSIONS: Our results indicate that cellular cholesterol content influences glucagon sensitivity and indicate a potential molecular basis for this phenomenon. This could be relevant to the pathogenesis of non-alcoholic fatty liver disease, which is associated with both hepatic cholesterol accumulation and glucagon resistance.


Assuntos
Colesterol , Glucagon , Glucose , Hepatócitos , Receptores de Glucagon , Animais , Colesterol/análise , Colesterol/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Camundongos , Receptores de Glucagon/metabolismo , Sinvastatina/metabolismo , Sinvastatina/farmacologia
6.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566223

RESUMO

Echimidine is the main pyrrolizidine alkaloid of Echium plantagineum L., a plant domesticated in many countries. Because of echimidine's toxicity, this alkaloid has become a target of the European Food Safety Authority regulations, especially in regard to honey contamination. In this study, we determined by NMR spectroscopy that the main HPLC peak purified from zinc reduced plant extract with an MS [M + H]+ signal at m/z 398 corresponding to echimidine (1), and in fact also represents an isomeric echihumiline (2). A third isomer present in the smallest amount and barely resolved by HPLC from co-eluting (1) and (2) was identified as hydroxymyoscorpine (3). Before the zinc reduction, alkaloids (1) and (2) were present mostly (90%) in the form of an N-oxide, which formed a single peak in HPLC. This is the first report of finding echihumiline and hydroxymyoscorpine in E. plantagineum. Retroanalysis of our samples of E. plantagineum collected in New Zealand, Argentina and the USA confirmed similar co-occurrence of the three isomeric alkaloids. In rat hepatocyte primary culture cells, the alkaloids at 3 to 300 µg/mL caused concentration-dependent inhibition of hepatocyte viability with mean IC50 values ranging from 9.26 to 14.14 µg/mL. Our discovery revealed that under standard HPLC acidic conditions, echimidine co-elutes with its isomers, echihumiline and to a lesser degree with hydroxymyoscorpine, obscuring real alkaloidal composition, which may have implications for human toxicity.


Assuntos
Echium , Alcaloides de Pirrolizidina , Animais , Echium/química , Hepatócitos/química , Alcaloides de Pirrolizidina/química , Ratos , Zinco
7.
Chem Res Toxicol ; 35(5): 807-816, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35442019

RESUMO

Cobalt, chromium, and nickel are used in orthopedic prostheses. They can be released, accumulate in many organs, and be toxic. The aim of this study is to evaluate the cytotoxicity of these metals on human hepatocytes and to improve our knowledge of their cellular toxicity mechanisms by metabolomic analysis. HepaRG cells were incubated for 48 h with increasing concentrations of metals to determine their IC50. Then, a nontargeted metabolomic study using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was done at IC50 and at a lower concentration (100 nM), near to those found in the blood and liver of patients with prostheses. IC50 were defined at 940, 2, and 1380 µM for Co, Cr, and Ni, respectively. In vitro, Cr appears to be much more toxic than Co and Ni. Metabolomic analysis revealed the disruption of metabolic pathways from the low concentration of 100 nM, in particular tryptophan metabolism and lipid metabolism illustrated by an increase in phenylacetylglycine, a marker of phospholipidosis, for all three metals. They also appear to be responsible for oxidative stress. Dysregulation of these pathways impacts hepatocyte metabolism and may result in hepatotoxicity. Further investigations on accessible biological matrices should be conducted to correlate our in vitro results with the clinical data of prostheses-bearing patients.


Assuntos
Cromo , Cobalto , Cromo/química , Cromo/toxicidade , Cobalto/toxicidade , Hepatócitos/química , Humanos , Metais , Níquel/toxicidade
8.
Anal Methods ; 14(17): 1715-1720, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438691

RESUMO

MicroRNAs (miRNAs) play important roles in physiological and pathological processes of cells. To develop a fast, simple and sensitive method to determine miRNAs is significant for miRNA studies. In this work, determination of microRNA-122 (miR-122) was achieved by laser-induced fluorescence (LIF) detection. A vial-LIF interface was first applied for sample analysis. A two-step amplification of the fluorescence signal for miR-122 was designed and realized by applying duplex-specific nuclease in the cleaving of two sensing probes. Under optimized conditions, the analysis of a miR-122 sample could be completed in less than 50 min. Only 10 µL sample was required for each test and the detection limit for the method was 0.60 pM equal to 1.2 amol of miR-122 in 10 µL solution. Lastly, the developed method was successfully applied to determine miR-122 in chicken and duck liver. The developed method was fast, selective, sensitive and sample-saving for the determination of miRNAs.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Biossensoriais/métodos , Endonucleases , Hepatócitos/química , Lasers , MicroRNAs/análise , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
9.
J Nanobiotechnology ; 19(1): 396, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838052

RESUMO

BACKGROUND: A recent study has reported that patients with nonalcoholic fatty liver disease (NAFLD) are more susceptible to coronary microvascular dysfunction (CMD), which may predict major adverse cardiac events. However, little is known regarding the causes of CMD during NAFLD. In this study, we aimed to explore the role of hepatic small extracellular vesicles (sEVs) in regulating the endothelial dysfunction of coronary microvessels during NAFLD. RESULTS: We established two murine NAFLD models by feeding mice a methionine-choline-deficient (MCD) diet for 4 weeks or a high-fat diet (HFD) for 16 weeks. We found that the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-dependent endothelial hyperpermeability occurred in coronary microvessels during both MCD diet and HFD-induced NAFLD. The in vivo and in vitro experiments proved that novel-microRNA(miR)-7-abundant hepatic sEVs were responsible for NLRP3 inflammasome-dependent endothelial barrier dysfunction. Mechanistically, novel-miR-7 directly targeted lysosomal associated membrane protein 1 (LAMP1) and promotes lysosomal membrane permeability (LMP), which in turn induced Cathepsin B-dependent NLRP3 inflammasome activation and microvascular endothelial hyperpermeability. Conversely, a specific novel-miR-7 inhibitor markedly improved endothelial barrier integrity. Finally, we proved that steatotic hepatocyte was a significant source of novel-miR-7-contained hepatic sEVs, and steatotic hepatocyte-derived sEVs were able to promote NLRP3 inflammasome-dependent microvascular endothelial hyperpermeability through novel-miR-7. CONCLUSIONS: Hepatic sEVs contribute to endothelial hyperpermeability in coronary microvessels by delivering novel-miR-7 and targeting the LAMP1/Cathepsin B/NLRP3 inflammasome axis during NAFLD. Our study brings new insights into the liver-to-microvessel cross-talk and may provide a new diagnostic biomarker and treatment target for microvascular complications of NAFLD.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Vesículas Extracelulares , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica , Animais , Extratos Celulares/farmacologia , Vasos Coronários/efeitos dos fármacos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Hepatócitos/química , Inflamassomos/efeitos dos fármacos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
10.
Rapid Commun Mass Spectrom ; 35(24): e9208, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34606659

RESUMO

RATIONALE: Methysticin is a naturally occurring ingredient isolated from Piper methysticum Forst. The metabolic profile of methysticin is unknown. The goal of this study was to elucidate the metabolism of methysticin using rat and human liver microsomes and hepatocytes. METHODS: The incubation samples were analyzed using ultra-high-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (UHPLC-HRMS). The structures of the metabolites were characterized based on the elemental composition, exact mass, and product ions. RESULTS: A total of 10 metabolites were detected and identified. Among these metabolites, M4 (ring opening of 1,3-benzodioxole) was the predominant metabolite in rat and human liver microsomes. M4 and its glucuronide conjugate (M2) were the major metabolites in rat and human hepatocytes. The metabolic pathways of methysticin are summarized as follows: (a) oxidative ring opening of 1,3-benzodioxole forms the catechol derivative (M4), which subsequently undergoes glucuronidation (M1 and M2), methylation (M8), and sulfation (M7). (b) Demethylation to yield desmethyl methysticin (M6), followed by glucuronidation (M3 and M5). (c) Hydroxylation (M9 and M10). CONCLUSIONS: For the first time, this study provides new information on the in vitro metabolic profiles of methysticin, which facilitates an understanding of the disposition of this bioactive ingredient.


Assuntos
Hepatócitos/química , Microssomos Hepáticos/química , Piranos/química , Piranos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Hepatócitos/metabolismo , Humanos , Hidroxilação , Espectrometria de Massas , Metaboloma , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos
11.
Rapid Commun Mass Spectrom ; 35(22): e9195, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34491599

RESUMO

RATIONALE: Pyrotinib is an irreversible EGFR/HER2 inhibitor that has shown antitumor activity and tolerance in the treatment of breast cancer. Studies focused on its metabolic pathways and major metabolites are insufficient. In the evaluation of drug safety and therapeutic use, metabolite characterization is critical. The metabolism of pyrotinib in vitro was studied utilizing rat, dog and human hepatocytes in this study. METHODS: Pyrotinib (10 µM) was incubated with hepatocytes in Williams' E medium. The metabolites were examined and profiled using ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. The metabolite structures were deduced by comparing their precise molecular weights, fragment ions and retention times with those of the parent drug. RESULTS: A total of 16 metabolites, including 6 novel ones, were discovered and structurally described under the present conditions. Oxidation, demethylation, dehydrogenation, O-dealkylation and glutathione (GSH) conjugation were all involved in the metabolism of pyrotinib in hepatocytes. The most predominant metabolic route was identified as GSH conjugation (M5). CONCLUSIONS: This study generated valuable metabolite profiles of pyrotinib in several species, which will aid in the understanding of the drug's disposition in various species and in evaluating the contribution of metabolites to overall effectiveness and toxicity of pyrotinib.


Assuntos
Acrilamidas/química , Acrilamidas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Hepatócitos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cães , Hepatócitos/química , Humanos , Ratos , Espectrometria de Massas em Tandem/métodos
12.
Rapid Commun Mass Spectrom ; 35(20): e9180, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34363627

RESUMO

RATIONALE: Rhapontigenin, a stilbene compound isolated from the medicinal plant of rhubarb rhizomes, has shown a variety of biological activities. The purpose of this study was to identify and characterize the metabolites of rhapontigenin in rat liver microsomes, hepatocytes, urine, and human liver microsomes and hepatocytes. METHODS: The samples were analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q/Orbitrap-HRMS). The structures of the metabolites were interpreted by MS, MS/MS data, and elemental compositions. RESULTS: A total of 11 metabolites were detected and tentatively identified. M1, identified as piceatannol, was unambiguously identified using reference standard. Our results suggested that rhapontigenin was metabolized through the following pathways: (a) demethylation to produce piceatannol (M1), which further underwent oxidation to form ortho-quinone intermediate. This intermediate was reactive and conjugated with GSH (M10 and M11), which were further converted into N-acetyl-cysteine and excreted in urine. M1 also underwent sulfation (M8) and glucuronidation (M5); (b) direct sulfation, forming M6 and M7; and (c) direct glucuronidation to form M2, M3, and M4. Glucuronidation was a major metabolic pathway in hepatocytes and urine. CONCLUSIONS: The current study provides an overview of the metabolism of rhapontigenin, which is of great importance for us to understand the disposition of this compound.


Assuntos
Estilbenos/química , Estilbenos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodos , Estilbenos/urina
13.
Methods Mol Biol ; 2342: 369-417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272702

RESUMO

Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.


Assuntos
Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cálculos da Dosagem de Medicamento , Vias de Eliminação de Fármacos , Hepatócitos/química , Humanos , Técnicas In Vitro , Cinética , Taxa de Depuração Metabólica , Modelos Teóricos , Proteômica
14.
J Med Chem ; 64(13): 9182-9192, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152137

RESUMO

Liver-specific contrast agents (CAs) can improve the Magnetic resonance imaging (MRI) detection of focal and diffuse liver lesions by increasing the lesion-to-liver contrast. A novel Mn(II) complex, Mn-BnO-TyrEDTA, with a lipophilic group-modified ethylenediaminetetraacetic acid (EDTA) structure as a ligand to regulate its behavior in vivo, is superior to Gd-EOB-DTPA in terms of a liver-specific MRI contrast agent. An MRI study on mice demonstrated that Mn-BnO-TyrEDTA can be rapidly taken up by hepatocytes with a combination of hepatobiliary and renal clearance pathways. Bromosulfophthalein (BSP) inhibition imaging, biodistribution, and cellular uptake studies confirmed that the mechanism of hepatic targeting of Mn-BnO-TyrEDTA is the hepatic uptake of the amphiphilic anion contrast agent mediated by organic anion transporting polypeptides (OATPs) expressed by functional hepatocytes.


Assuntos
Meios de Contraste/farmacocinética , Complexos de Coordenação/farmacocinética , Ácido Edético/farmacocinética , Hepatócitos/metabolismo , Imageamento por Ressonância Magnética , Manganês/farmacocinética , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ácido Edético/química , Hepatócitos/química , Hepatócitos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Manganês/química , Camundongos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
15.
Mol Med Rep ; 24(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955511

RESUMO

Non­alcoholic fatty liver disease (NAFLD) is a widespread threat to human health. However, the present screening methods for NAFLD are time­consuming or invasive. The present study aimed to assess the potential of microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) as a biomarker of NAFLD. C57BL/6J mice were fed either a 12­week high­fat diet (HFD) or standard chow to establish NAFLD and control groups, respectively. Serum samples were obtained from the mouse model of NAFLD, as well as 50 patients with NAFLD and 50 healthy individuals, and EVs were extracted and verified. Using reverse transcription­quantitative PCR, the mRNA expression level of selected miRNAs in the serum and EVs was analyzed. In order to determine the diagnostic value, receiver operating characteristic (ROC) curves were used. The mice treated with HFD showed notable hepatic steatosis and higher concentrations of serum alanine aminotransferase (ALT). There was also a significant decrease in the expression levels of miR­135a­3p, miR­129b­5p and miR­504­3p, and an increase in miR­122­5p expression levels in circulating EVs in mice treated with HFD and patients with NAFLD. There were also similar miR­135a­3p and miR­122­5p expression patterns in the serum. ROC analysis demonstrated that miR­135a­3p in circulating EVs was highly accurate in diagnosing NAFLD, with the area under the curve value being 0.849 (95% CI, 0.777­0.921; P<0.0001). Bioinformatics analysis indicated that dysregulated miR­135a­3p was associated with 'platelet­derived growth factor receptor signaling pathway' and 'AMP­activated protein kinase signaling pathway'. In summary, circulating miR­135a­3p in EVs may serve as a potential non­invasive biomarker to diagnose NAFLD. This miRNA was a more sensitive and specific biological marker for NAFLD compared with ALT.


Assuntos
MicroRNA Circulante/sangue , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , MicroRNAs/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Voluntários Saudáveis , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Curva ROC
16.
Sci Rep ; 11(1): 5130, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664366

RESUMO

With the aim of understanding and recapitulating cellular interactions of hepatocytes in their physiological microenvironment and to generate an artificial 3D in vitro model, a co-culture system using 3D extrusion bioprinting was developed. A bioink based on alginate and methylcellulose (algMC) was first shown to be suitable for bioprinting of hepatocytes; the addition of Matrigel to algMC enhanced proliferation and morphology of them in monophasic scaffolds. Towards a more complex system that allows studying cellular interactions, we applied core-shell bioprinting to establish tailored 3D co-culture models for hepatocytes. The bioinks were specifically functionalized with natural matrix components (based on human plasma, fibrin or Matrigel) and used to co-print fibroblasts and hepatocytes in a spatially defined, coaxial manner. Fibroblasts acted as supportive cells for co-cultured hepatocytes, stimulating the expression of certain biomarkers of hepatocytes like albumin. Furthermore, matrix functionalization positively influenced both cell types in their respective compartments by enhancing their adhesion, viability, proliferation and function. In conclusion, we established a functional co-culture model with independently tunable compartments for different cell types via core-shell bioprinting. This provides the basis for more complex in vitro models allowing co-cultivation of hepatocytes with other liver-specific cell types to closely resemble the liver microenvironment.


Assuntos
Bioimpressão , Hepatócitos/ultraestrutura , Impressão Tridimensional , Engenharia Tecidual , Alginatos/química , Técnicas de Cocultura , Matriz Extracelular/química , Matriz Extracelular/ultraestrutura , Fibroblastos/ultraestrutura , Hepatócitos/química , Humanos , Tecidos Suporte
17.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484963

RESUMO

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Assuntos
Edição de Genes/métodos , Hepatócitos/transplante , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Ornitina Carbamoiltransferase/genética , Adulto , Idoso , Amônia/metabolismo , Animais , Células Cultivadas , Criança , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hepatócitos/química , Hepatócitos/citologia , Humanos , Íntrons , Masculino , Camundongos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ácido Orótico/urina , Splicing de RNA
18.
Anal Bioanal Chem ; 413(5): 1353-1361, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33404748

RESUMO

Copper transporter 1 (CTR1) is a transport protein involved in copper and cisplatin uptake. The visualization of cellular CTR1 migration and its redistribution is highly important in copper/cisplatin exposure/transport. However, to the best of our knowledge, this is a highly challenging task. Herein, a dual-mode imaging strategy for CTR1 is developed by hyphenating confocal laser scanning microscopy (CLSM) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) with a fluorescent/elemental bifunctional tag conjugated with anti-CTR1 antibody. The tag consists of rhodamine B and zirconium metal-organic frameworks (Zr-MOF) for CLSM fluorescence imaging and LA-ICPMS element imaging for a same group of HepG2 cells in a designated visual zone. This dual-mode imaging strategy facilitates visualization of CTR1 migration and meanwhile provides information of CTR1 redistribution in HepG2 cells by uptake of divalent copper or cisplatin. The present dual-mode imaging strategy provides in-depth information for the elucidation of CTR1 involved biological processes. Graphical abstract.


Assuntos
Transportador de Cobre 1/análise , Hepatócitos/química , Células Hep G2 , Humanos , Espectrometria de Massas/métodos , Estruturas Metalorgânicas/química , Microscopia Confocal/métodos , Imagem Óptica/métodos , Rodaminas/química , Zircônio/química
19.
Biochim Biophys Acta Gen Subj ; 1865(4): 129559, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084396

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are a diverse group of membrane-bound nanovesicles potentially released by every cell. With the liver's unique ensemble of cells and its fundamental physiological tasks, elucidating the role of EV-mediated hepatic cellular crosstalk and their role in different pathologies has been gaining the attention of many scientists. SCOPE OF REVIEW: The present review shifts the perspective into practice: we aim to critically discuss the methods used to purify and to biochemically analyse EVs from specific liver resident cells, including hepatocytes, hepatic stellate cells, cholangiocytes, liver sinusoidal endothelial cells, Kupffer cells, liver stem cells. The review offers a reference guide to current approaches. MAJOR CONCLUSIONS: Strategies for EV isolation and characterization are as varied as the research groups performing them. We present main advantages and disadvantages for the methods, highlighting common causes for concern, such as FBS handling, reporting of cell viability, EV yield and storage, differences in differential centrifugations, suboptimal method descriptions, and method transferability. We both looked at how adaptable the research between human and rodent cells in vitro is, and also assessed how well either of them translates to ex vivo settings. GENERAL SIGNIFICANCE: We reviewed methodological practices for the isolation and analysis of liver-derived EVs, making a cell type specific user guide that shows where to start, what has worked so far and to what extent. We critically discussed room for improvement, placing a particular focus on working towards a potential standardization of methods.


Assuntos
Vesículas Extracelulares/química , Fígado/citologia , Animais , Centrifugação/métodos , Células Endoteliais/química , Células Endoteliais/citologia , Células Estreladas do Fígado/química , Células Estreladas do Fígado/citologia , Hepatócitos/química , Hepatócitos/citologia , Humanos , Células de Kupffer/química , Células de Kupffer/citologia , Fígado/química , Células-Tronco/química , Células-Tronco/citologia
20.
J Liposome Res ; 31(1): 79-89, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31691619

RESUMO

In this study, we describe a novel synthesis of galactosylated lipids by lipase catalysis. Lactitol (Lac), galactose (Gal), or N-acetyl galactosamine (GalNAc) was coupled with cholesterol (CHS) as target head groups by enzyme-catalyzed regioselective esterification to produce three kinds of lipids: CHS-1-Gal, CHS-6-Gal, or CHS-6-GalNAc1. The biological effects of galactosylated lipids carrying different constitutional isomers of the pendent sugar species were investigated. LP-1-Gal (liposomes containing 5.0 molar% of CHS-1-Gal) showed strong binding to tetrameric lectins of Ricinus communis agglutinin (RCA120) in vitro, while LP-6-Gal (liposomes containing 5.0 molar% of CHS-6-Gal) and LP-6-GalNAc (liposomes containing 5.0 molar% of CHS-6-GalNAc) did not. After intravenous injection, LP-6-GalNAc, LP-1-Gal and LP-6-Gal rapidly disappeared from the blood and accumulated rapidly in liver (up to 74.88 ± 4.11%, 58.67 ± 5.75%, and 47.66 ± 4.56% of injected dose/g organ within 4 h, respectively). This is significantly higher than the uptake of unmodified liposomes (Unmod-LP) (18.67 ± 6.07%). Pre-injection of asialofetuin significantly inhibits liver uptake of Gal-liposomes (P < 0.01), with the degree of inhibition appearing in the following order: LP-6-GalNAc (73.29%) > LP-1-Gal (67.06%) > LP-6-Gal (53.61%). More importantly, LP-6-GalNAc was preferentially taken up by hepatocytes and the uptake ratio by parenchymal cells (PC) and nonparenchymal cells (NPC) (PC/NPC ratio) was 11.03 higher than LP-1-Gal (7.32), LP-6-Gal (5.83) and Unmod-LP (2.39). We suggest that liposomes containing the novel galactosylated lipid CHS-6-GalNAc have potential as drug delivery carriers for hepatocyte-selective targeting.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Galactosamina/metabolismo , Galactose/metabolismo , Hepatócitos/metabolismo , Animais , Receptor de Asialoglicoproteína/química , Feminino , Galactosamina/química , Galactose/química , Hepatócitos/química , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Tamanho da Partícula , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...